Search results for " 53C55"
showing 4 items of 4 documents
Rigidité, comptage et équidistribution de chaînes de Cartan quaternioniques
2020
We prove an analog of Cartan's theorem, saying that the chain-preserving transformations of the boundary of the quaternionic hyperbolic spaces are projective transformations. We give a counting and equidistribution result for the orbits of arithmetic chains in the quaternionic Heisenberg group.; Nous montrons un analogue d'un théorème de Cartan, disant que les transformations préservant les chaînes sur le bord d'un espace hyperbolique quaternionien est une transformation projective. Nous donnons un résultat de comptage et d'équidistribution pour une orbite de chaînes arithmétiques dans le groupe de Heisenberg quaternionique.
Counting and equidistribution in quaternionic Heisenberg groups
2020
AbstractWe develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over ${\mathbb{Q}}$ in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.
The c-map on groups
2019
We study the projective special Kaehler condition on groups, providing an intrinsic definition of homogeneous projective special Kaehler that includes the previously known examples. We give intrinsic defining equations that may be used without resorting to computations in the special cone, and emphasise certain associated integrability equations. The definition is shown to have the property that the image of such structures under the c-map is necessarily a left-invariant quaternionic Kaehler structure on a Lie group.
Counting and equidistribution in Heisenberg groups
2014
We strongly develop the relationship between complex hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on complex hyperbolic spaces, especially in dimension $2$. We prove a Mertens' formula for the integer points over a quadratic imaginary number fields $K$ in the light cone of Hermitian forms, as well as an equidistribution theorem of the set of rational points over $K$ in Heisenberg groups. We give a counting formula for the cubic points over $K$ in the complex projective plane whose Galois conjugates are orthogonal and isotropic for a given Hermitian form over $K$, and a counting and equidistribution result for …